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In this study, we report a facile replacement reduction method to directly deposit the large-scale Ag
nanoparticles on a silicon substrate at the room temperature and short reaction time (3 min). The re-
action process is a straightforward wet chemistry approach using silver nitrate and hydrogen fluoride as
a silver source and reducing reagent, respectively. The Ag nanoparticles as a surface-enhanced Raman
scattering (SERS) substrate present high sensitivity, excellent uniformity, and high stability for rhoda-

mine 6G molecules. Also, Ag nanoparticles are also shown to provide a unique platform for the SERS
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detection of melamine, 5-fluorouracil, amoxicillin in different aqueous media. The fabrication of Ag
nanoparticles is facile, low cost, strong enhancement, low detection limit, high reproducibility, and
stability, which is advantageous for the applications of other SERS-based sensors.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Surface-enhanced Raman scattering (SERS) is one of the most
promising analytical techniques, which has attracted scientist in-
terest due to its high sensitivity, rapid response, unique spectro-
scopic fingerprint, and nondestructive data acquisition [1—3]. SERS
is a powerful analytical technique that can use to detect the trace
concentrations of chemical molecules or biomolecules and pro-
vides a wealth of structural information [4—6]. Due to its unique
characteristics, SERS has used as a useful tool for sensing of metals
ions, chemical reagents, organic pollutants, pH, DNA, proteins,
nucleic acids, glucose, small or large molecules under the different
environments [7—10]. Also, SERS can also be used to combine with
other analytical techniques, such as liquid chromatography (LC)
[11], high-performance liquid chromatography (HPLC) [12], solid
phase microextraction (SPME) [13,14], and UV—vis spectroscopy
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[15,16].

It has demonstrated that SERS substrates play a significant role
in the sensitivity and stability of SERS detection [17,18]. Recently,
various approaches and techniques have been developed to fabri-
cate highly sensitive SERS substrates [19—21]. However, the ability
to create more uniform and reproducible SERS substrates is still a
significant challenge. Recently, SERS substrates have mainly
dominated by the absorption of analytes on rough metallic sur-
faces, such as gold (Au), silver (Ag), or copper (Cu) [22]. Among
them, Au and Ag commonly use as SERS substrates due to their
higher stability rather than Cu under ambient condition [23].
Compared to Au, Ag can provide higher SERS enhancement
(10—100 times) and excite from the UV to the infrared (IR) region
for the SERS applications in different fields [24—26].

There are different kinds of methods used to fabricate Ag
nanostructures on the solid substrates for SERS substrates, such as
thermal evaporation [27,28], ion sputtering [29], vapor-phase
synthesis [30], electrochemical [31—33], self-assembly [34], wet
chemical [35,36], replacement reduction [37,38], and electroless
deposition methods [39]. Among them, electroless deposition is a
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particularly attractive method to synthesize Ag nanostructures on
the silicon-based substrate by a single reaction step [39]. For elec-
troless deposition processes, the deposition of Ag nanostructures
from silver nitrate and hydrogen fluoride aqueous solution is an
electrochemical redox reaction in which both anodic and cathodic
processes coincide at the surface of a silicon substrate by exchanged
these charges [40]. The relation of concentration of silver nitrate
and hydrogen fluoride is not only used to grow random orientation
of Ag dendrites on the silicon substrates but also etched silicon
substrate to form silicon nanowires [41]. How to effectively grow a
regular silver nanostructure on a silicon substrate has always been
an important issue.

In this work, we report a one-step and straightforward process
to directly deposit Ag nanoparticles on a silicon substrate with the
large-scale area by replacement reduction method. The surface-
enhanced Raman scattering of the silver nanoparticles was also
investigated to detect rhodamine 6G, melamine, 5-fluorouracil,
amoxicillin in different aqueous media. The fabrication of Ag
nanoparticles is feasible, large-scale, low detection limit, high
reproducibility and stability, and which shall be advantageous for
other commercial applications of SERS sensing.

2. Experimental
2.1. Synthesis

Fig. 1 presents the approach for fabricating Ag nanoparticles on
the silicon substrate by the replacement reduction method. This Si
(001) substrate with the size of 1cm x 1 cm was ultrasonically
cleaned in ethanol and dilute hydrogen fluoride (HF) solution for
15min and 1 min to dissolve organic contamination and native
oxide layers on the surface, respectively. Ag nanoparticles were
grown on the silicon substrate by a replacement reduction method
in 10 mL aqueous solution containing the appropriate concentra-
tion of silver nitrate (8 mM) and hydrofluoric acid (90 mM) at room
temperature for 3 min. Finally, the product substrate washed by
deionized water and ethanol each, which dried with an air purge.

2.2. Characterization

The surface morphologies of Ag nanoparticles obtained by a
field-emission scanning electron microscope (FESEM, Hitachi S-
4800). The microstructures of Ag nanoparticles examined by field-
emission transmission electron microscope (FETEM, JEOL-2100F).
X-ray diffraction (XRD) measurement was carried out on a pow-
der diffractometer (Bruker D2 phaser). The SERS spectra collected
on a confocal Raman micro-spectrometer (MRI532S, Protrustech,
Taiwan) with a laser wavelength of 532 nm at room temperature.

3. Results and discussion

Fig. 2a and b presents the low- and high-magnification tilt-view
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Fig. 2. The (a) low- and (b) high-magnification of SEM images of Ag nanoparticles
directly grown on the silicon substrate. (c) TEM and (d) HRTEM images of an Ag
nanoparticle. (e) XRD spectrum of Ag nanoparticles grown on the silicon substrate. (For
interpretation of the references to colour in this figure legend, the reader is referred to
the Web version of this article.)

FESEM images depicting the Ag nanoparticles are directly grown on
the silicon substrate by a replacement reduction method with the
reaction precursors (silver nitrate (8 mM) and hydrofluoric acid
(90 mM)) at room temperature for 3 min. The Ag nanoparticles
exhibited the complete and large-scale to deposit on the silicon
substrate. Fig. 2c displays a FETEM image of an Ag nanoparticle with
a size of 51 nm. Lattice image (Fig. 2d) shows interplanar spacing of
0.238 nm corresponds to the (111) lattice plane of cubic Ag (JCPDS
Card No. 04-0783). Powder XRD was employed to verify the crystal
structure and phase purity of Ag nanoparticles, as shown in Fig. 2e.
It can see that the four diffraction peaks at the 26 positions 38.1°,
44.3°, 64.5°, and 77.4° correspond to the (111), (200), (220), and
(311) planes of cubic Ag (JCPDS Card No. 04-0783). Also, no sig-
nificant diffraction peaks arising from crystalline impurities can be
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Fig. 1. Schematic diagram for the fabrication of Ag nanoparticles by a replacement reduction method.
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detected, indicating that the product is a pure cubic Ag phase.

To investigate the performance of Ag nanoparticles in the SERS
detection, rhodamine 6G (R6G) can select as a probe molecule. This
silicon substrate with Ag nanoparticles (Fig. 2a) was immersed in
deionized water of R6G (107®M) for 1h and then rinsed with
deionized water to remove the unbound molecules. After dried
under an air purge, we randomly detected the SERS spectra of the
R6G with the same concentration from 5 spots under the same laser
power, as shown in Fig. 3a. The primary vibration peaks of R6G are
1185 (in-plane vibration of C—H bonds), 1311 (C—C stretching), 1360
(aromatic C—C stretching vibration mode), 1507 (aromatic C—C
stretching vibration mode), and 1645 (aromatic C—C stretching
vibration mode) cm~! [25]. The position and intensity of the Raman
peak do not show a significant change, and the intensity of all peaks
is within 9% variation range for the 5 spots. This result demon-
strates that Ag nanoparticles with high homogeneity. The repro-
ducibility of the SERS substrate is one of the essential parameters
for SERS applications. In this study, the recycling ability of the Ag
nanoparticles can obtain from the same substrate before and after
irradiated with UV lamp over three cycles, as shown in Fig. 3b. For
each cycle, this substrate could be entirely photodegraded by
irradiated 36 W UV lamp (max. 350 nm, PL-L, Philip) for 1 h. This
substrate immersed in a fresh R6G solution (10~®M) for another
cycle of SERS measurement. The photodegraded mechanism of R6G
may ascribe to Ag nanoparticles photoexcited to facilitate the
generation of electrons and Ag" (h") ions by surface plasmon
resonance under UV-light irradiation. Due to the Ag™ (h') ions are
also reactive radical species, which can also directly oxidize R6G

Intensity (a.u.)

and reduce to metallic Ag again [42,43]. This result indicates that Ag
nanoparticles can maintain a relatively high SERS enhancement
even after three cycles.

The SERS detection limit of the Ag nanoparticles can determine
by immersing R6G solutions of different concentrations 10~ to
10~ M, as shown in Fig. 4a. The main SERS peaks of R6G gradually
increased with increasing the concentration of the R6G solution.
Due to the SERS peak at 1645 cm™! does not overlap with other
peaks, which selects as the marker peak of R6G. The intensity of the
R6G Raman signal achieved at the critical concentration of 10710 M,
which revealed the SERS detection limit of Ag nanoparticles for the
detection of the R6G solution. To demonstrate that Ag nano-
particles can also apply to detect R6G in different aqueous media.
Herein, we used three kinds of aqueous media to dissolve R6G
molecules for the SERS measurement, as shown in Fig. 4b. The three
types of aqueous media are deionized water, reverse osmosis water,
and tap water, respectively. Even if the R6G molecule was dissolved
in tap water or reverse osmosis water, the Raman signal did not
exhibit any significant change. The results demonstrate that Ag
nanoparticle can also use to detect R6G molecules under the more
complex matrix of water.

To demonstrate that Ag nanoparticles can use for the detection
of different kinds of toxic chemical. Herein, we investigated the
SERS properties of Ag nanoparticles using melamine as a probe
molecule. Melamine is a toxic chemical and nitrogen-rich com-
pound, which mainly applies in the production of flame retardants,
commercial filters, and kitchenware, etc. Its widespread use may
result in trace amounts of melamine in food [44,45]. Fig. 5a shows
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Fig. 3. (a) The SERS spectra of the R6G (10~ M) from 5 randomly selected spots on the silicon substrate with Ag nanoparticles. (b) The SERS spectra of R6G (106 M) before and after
the irradiation of UV light in 3 cycles on the silicon substrate with Ag nanoparticles. (For interpretation of the references to colour in this figure legend, the reader is referred to the

Web version of this article.)
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Fig. 4. The SERS spectra of the different concentrations of R6G adsorbed on the silicon substrate with Ag nanoparticles from 1078 to 1071 M. (b) The SERS spectra of the R6G
(10~%M) dispersed in different aqueous media. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 5. (a) The SERS spectra of the different concentrations of melamine absorbed on the silicon substrate with Ag nanoparticles from 10~ to 1072 M. (b) The SERS spectra of the
melamine (107 M) dispersed in different aqueous media. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 6. (a) The SERS spectra of the different concentrations of 5-fluorouracil absorbed on the silicon substrate with Ag nanoparticles from 10> to 10~ M. (b) The SERS spectra of the
5-fluorouracil (10> M) dispersed in different aqueous media. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this

article.)

the SERS spectra obtained when immersed in melamine solutions
of different concentrations, following the same procedure from low
to high concentration (10~% to 1072 M) as that in the R6G mea-
surements. Even if the concentration of the melamine solution is
down to 1072, the Raman peak at 682 cm™~' can clearly observe.
Also, melamine molecules (10~ M) were also dissolved in the three
types of aqueous media for the SERS measurement, as shown in
Fig. 5b. The results show that there was no noticeable change in the
intensity and position of the Raman signal.

To further prove that the Ag nanoparticles can also apply to the
detection of drugs. Herein, we adopt two different kinds of drugs
for the SERS measurement. The two different types of medicines
are 5-fluorouracil (5-FU) and amoxicillin, respectively. 5-FU is an
antimetabolite of the pyrimidine analog type and a well-known
anticancer drug widely used in the treatment of solid cancers,
such as stomach, colon, lung, and breast cancers [46,47]. Amoxi-
cillin is an antibacterial drug and widely used to treat bacterial
infections in humans and animals [48,49]. For the detection of 5-FU,
the SERS spectra obtained with the different concentrations (103
to 107> M) of 5-FU on the Ag nanoparticles, as shown in Fig. 6a. In
this case, the detection concentration of 5-FU is as lower as 107> M,
which is lower than the value (1.5 x 107> M) of the detected con-
centration for the previous report [50]. For the different aqueous

media, the intensity of the Raman signal for 5-FU dissolved in tap
water or reverse osmosis water exhibited evidence decrease rather
than 5-FU dissolved in deionized water, as shown in Fig. 6b. This
phenomenon shall ascribe to tap water or reverse osmosis water
contain trace amounts of chloramine that can react with the N—H
bond to form N—CI bond in the pyrimidine ring of 5-FU and affect
the measurement of the Raman signal. In the previous work, the
chloramine may transfer their active chlorine to other amine
groups (such as amines, amino acids, peptides, etc.) [51]. For the
detection of amoxicillin, the SERS spectra obtained with the
different concentrations (10~> to 10~8 M) of amoxicillin on the Ag
nanoparticles, as shown in Fig. 7a. The distinct characteristic peaks
observed even when the amoxicillin concentration was down to
10~8 M. Also, amoxicillin molecules (10~3 M) were also dissolved in
the three types of aqueous media for the SERS measurement
(Fig. 7b), which was also no apparent change in the intensity and
position of Raman signal. The results indicate that Ag nanoparticles
would potentially apply to the trace detection of persistent toxic
chemicals and drugs in different aqueous media.

4. Conclusions

Large-scale and high-density Ag nanoparticles have directly
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Fig. 7. (a) The SERS spectra of the different concentrations of amoxicillin absorbed on the silicon substrate with Ag nanoparticles from 10~> to 10~ M. (b) The SERS spectra of the
amoxicillin (10~3 M) dispersed in different aqueous media. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this

article.)

grown on a silicon substrate by using a replacement reduction
method at the room temperature. The silver nanoparticles can
provide an excellent platform for SERS, yielding detection levels for
R6G (10~1°M), melamine (10~°M), 5-fluorouracil (10~>M), and
amoxicillin (10-8 M), respectively. The Ag nanoparticles provide
simplicity, high reproducibility, high enhancement, low detection
limits, and low-cost manufacturing, which are of great value for the
practical application of other SERS sensing systems.
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