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ARTICLE INFO ABSTRACT
Keywords: Silver nanowire ink was written on the surface of drawing paper by automatic writing method. Scanning electron
Silver nanowires microscopy was used to characterize the surface morphologies of the drawing paper before and after writing
SERS

silver nanowires. The effects of fabrication parameters and measurement parameters on silver nanowires arrays
were investigated. Crystal violet was selected as the probe molecule to study the SERS performance of silver
nanowires arrays. The detection limit of crystal violet was as low as 10'® mol/L. The uniformity and repeat-
ability of the arrays were also explored, and the relative standard deviation values were about 10%. Moreover,
silver nanowires arrays were also relatively stable that SERS signals were still observed after ten weeks. Detection
of the crystal violet residue was further achieved on the substrates by continuously pressing nine times. In
addition, silver nanowires arrays were also applied to the quantitative analyses of 2, 2'-bipyridyl.

Crystal violet
Automatic writing method
2, 2/-bipyridyl

1. Introduction pharmaceutical analyses [1-4]. There are two main enhancement
mechanisms of SERS: electromagnetic enhancement and chemical

Surface-enhanced Raman scattering (SERS) is a nondestructive, enhancement [5,6]. It is generally believed that the electromagnetic
highly sensitive and selective analysis technique, which plays an enhancement excited by surface plasmon resonance contributes to the
important role in food detection, environmental monitoring and enhancement of the weak Raman scattering from target molecules [7].
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Fig. 1. Schematic diagram of the preparation and detection of silver nanowires array.
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Fig. 2. SEM images of drawing paper (a) uncoated and (b) coated with silver nanowires.

The electromagnetic field around the nanostructures is often called “hot
spots”. Hot spots are mainly determined by the size of nanostructures
[8], period of nanostructure arrays [9] or the nanoscale gap between
two nanostructures [10]. Chemical enhancement is concerned with
charge transfer interactions between substrates and target molecules
[11]. Silver is considered to be the best SERS material with a strong
signal response [12]. Silver nanostructures with various shapes,
including nanoparticles, nanowires, nanorods, nanoplates and so on
have been prepared [13-16]. Among them, nanostructures with high
curvature surfaces and sharp edges exhibited great Raman scattering
enhancement [17,18]. Silver nanowires possess non-circular cross-sec-
tion and tip properties, which are conducive to the effective enrichment
of local electromagnetic fields [19,20]. Previous studies have shown that
the nanotips and particle gaps of silver nanowires tended to generate
strong hot spots, which was very beneficial for the detection of target
molecules [21,22].

Paper is widely used as a supporting base for SERS substrates due to
its lightness, flexibility and low cost [23]. Additionally, the hierarchical
roughness of paper provides greater surface area for analytes detection
[24]. At present, several different methods have been employed to
prepare SERS substrates on paper, such as screen printing, ink-
jet printing, dropping method [19,25,26]. For example, Joshi et al.
prepared silver nanowires paper-based SERS substrates on demand by
inkjet printing silver halide, and the substrates could be preserved for
one year under environmental conditions [25]. Sun et al. directly

dropped silver nanowires on the surface-modified paper to prepare a
paper-based SERS substrate and successfully detected furazolidone in
different environments [19]. These substrates have shown great poten-
tial as low cost, disposable and reproducible for molecular analyses.
However, there is still a need to improve the reproducibility and reduce
the cost of preparing SERS substrates. Automatic writing is a machine
that mimics human handwriting. At present, automatic writing tech-
nique has been used in the fields of human health monitoring and
electronic sensors [27,28]. Automatic writing machine can adjust
writing speed and design required patterns. Moreover, the operation
process of automatic writing instrument is simple and safe.

In this paper, silver nanowires arrays were prepared on drawing
paper by automatic writing method. Firstly, the optimal preparation and
measurement parameters affecting the SERS performance of silver
nanowires arrays were studied. Subsequently, the SERS activities of
silver nanowires arrays were evaluated using crystal violet. And the
uniformity, repeatability and stability of the arrays were further
explored. Moreover, the arrays were used for SERS detection of crystal
violet residues in consecutive nine fingerprints and quantitative ana-
lyses of 2, 2'-bipyridyl.
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Fig. 3. The plots of different (a) drying temperatures, (b) drying time, (c) laser powers and (d) integration time versus the peak intensities of crystal violet adsorbed
on silver nanowires arrays.

30000
-4
50000 () |10 mol/L (b) ——o13em’
25000 | . .
40000 10" mol/L ~ H76.em
= = 20000 F
[+ <
N N
2 30000 2 15000 |
= 7
o o
2 20000 2 10000 F
S =
10000 w/\.h—w-/\_A/\/\/J‘/L___ 5000 |
(]
0 (U3 ad ud T i Tl P P s aiand s aaumd sl
300 600 900 1200 1500 1800 0 10" 107 10 100 100 10°

Raman shift (cm™)

Concentration (mol/L)
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and peak intensities at 913 and 1176 cm

-1

Table 1
Silver nanowires SERS substrates prepared by different methods.
SERS substrates Methods Supporting materials Probe molecules Limit of detection (LOD)  References
AgNWs@AgNPs film Interface self-assembly Shape memory polyurethane (SMPU)  Rhodamine B 10° mol/L. [33]
AgNWs paper substrate Dropping Filter paper Methylene blue (MB) 10® mol/L [19]
AgNWs-network-film (AgNWNF)  Spraying Polydimethyl siloxane (PDMS) Rhodamine 6G (R6G) 107 mol/L [34]
AgNWs film Evaporation-induced aggregation  Glass slide Rhodamine 6G (R6G)  107'° mol/L [35]
AgNWs@PDMS Dropping Polydimethyl siloxane (PDMS) Malachite 10® mol/L [36]
green (MG)
Crystal violet (CV) 10"'® mol/L This work

AgNWs arrays

Automatic writing

Drawing paper
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Fig. 5. (a) SERS spectra of thirty points of crystal violet adsorbed on the same array and (b) the corresponding SERS intensity distribution at 913 cm L. (¢) SERS
spectra of crystal violet obtained from 4 x 4 silver nanowires arrays and (d) the corresponding SERS intensities at 913 and 1176 cm L. (e) SERS spectra of crystal

violet during different storage time and (f) the corresponding SERS intensities at 913 and 1176 cm™ .

2. Experimental
2.1. Materials and reagents

Silver nanowire ink with diameters and length of 30 ~ 60 nm and 10
~ 50 pm was purchased from Zhejiang Kechuang Advanced Materials
Technology Co., Ltd.. The drawing paper (9.15 g/piece, white color,
Guangbo Group Co., Ltd.) was purchased from the local supermarket.
The paper did not require special treatment before writing. The pen with
a tip of 0.7 mm was bought from Shanghai Boccaccio Industry Co., Ltd..
Table S1 exhibited the details of the pen. The automatic writing device
was supplied by Hunan Chuanglebo Intelligent Technology Co., Ltd.

1

(Hunan, China). The characteristic parameters of automatic writing
device were exhibited in Table S2. Crystal violet and 2, 2'-bipyridyl were
provided by Shanghai Bailingwei Chemical Technology Co., Ltd. and
Shanghai Maclin Biochemical Technology Co., Ltd., respectively. The
specific chemical structural structures of crystal violet and 2, 2/-bipyr-
idyl were shown in Fig. S1. Concentrated hydrochloric acid (HCI, 36-38
wt%) was supplied by Shanghai Runjie Chemical Reagent Co., Ltd..
Crystal violet ethanol solution with a concentration of 102 mol/L was
prepared. Then the stock solution was diluted with deionized water to
prepare crystal violet solutions with concentrations from 102 to 10°
mol/L.
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Fig. 6. SERS spectra of crystal violet were obtained by pressing the fingerprint
on silver nanowires arrays.

2.2. Preparation of silver nanowires arrays on drawing paper

Fig. 1 showed the schematic diagram of fabricating silver nanowires
arrays by automatic writing method. Firstly, silver nanowire ink was
filled into a pen and the pen was fixed in the card slot of the automatic
writing device. Parameters such as the shape and size of the substrate,
the writing speed and height of the device were set through the com-
puter connected to the automatic writing device. In the experiment, the
shape of the substrate was set as a square of 2 x 2 mm?, and the writing
speed and height of the instrument were 5000 mm/min and 3 mm,
respectively. Secondly, the silver nanowires arrays were dried in an oven
with different drying temperatures and drying time, respectively.
Finally, crystal violet solutions with different concentrations were
dropped onto the silver nanowires arrays. After evaporation, the SERS
spectra were collected by Raman spectrometer.

2.3. Characterization

The surface morphology of the drawing paper before and after
writing silver nanowire ink were characterized by field emission scan-
ning electron microscopy (S4800, SEM, Hitachi) at an accelerating
voltage of 5.0 kV. Normal Raman spectra and SERS spectra were
measured using the PTT-MRI Raman spectrometer (ProTrusTech Co.,
Ltd.) equipped with a 532 nm laser. The SERS spectra were measured
from 300 to 1800 cm ™. The accumulated time and the resolution were
one time and 2 cm™!, respectively. The laser power incident on the
sample was 3 mW and the integration time was 3 s. For 2, 2’-bipyridyl,
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the laser power on the sample was 5 mW, and each spectrum was
collected with the integration time of 10 s.

3. Results and discussion
3.1. Morphological characterization of silver nanowires arrays

Fig. 2(a) exhibited a low-magnification SEM image of the drawing
paper. Note that besides the naturally folded three-dimensional struc-
ture, some particulates were also observed. These particulates are pre-
sumed to be pigment fillers, which are used in the manufacture of office
paper [29]. The SEM image of the drawing paper coated with silver
nanowires was presented in Fig. 2(b). It can be seen that silver nano-
wires were interwoven to form network structures. The cross sectional
SEM images of silver nanowires on drawing paper at different magnifi-
cations were shown in Fig. S2. The thickness of the silver nanowires was
about 3.34 pm. The SERS intensity was mainly concentrated in the gaps
between adjacent nanowires and in the nanowire tips to form “hot
spots”.

3.2. The effect of preparation and test parameters on SERS activities of
silver nanowires arrays

The SERS spectra of crystal violet adsorbed on different paper-based
silver nanowires arrays were exhibited in Fig. S3. By comparison, it
could be found that the silver nanowires arrays on drawing paper had
relatively high SERS intensity. Therefore, the following research mainly
discussed the silver nanowires arrays on drawing paper. During the
preparation of the arrays, drying temperature and time were the
important parameters. To investigate the effect of drying temperature on
SERS activities of the arrays, SERS spectra of crystal violet adsorbed on
the arrays dried from 50 to 150 °C were collected. The laser power and
integration time were 1 mW and 3 s, respectively. The characteristic
peak at 913 cm ™! was picked to calculate the peak intensity. And the
relationship between drying temperature and SERS intensity was plotted
in Fig. 3(a). The peak intensity first increased and then decreased
gradually with the increase of drying temperature. The best performance
was achieved when the drying temperature reached 100 °C. Fig. 3(b)
displayed the relationship between different drying time and SERS ac-
tivities of silver nanowires arrays under the same measurement condi-
tions. The silver nanowires adhered to the drawing paper better when
the drying time was 30 min. In addition, laser power and integration
time were also the important parameters. Fig. 3(c) showed the SERS
activities of the arrays with laser power from 1 mW to 8 mW and inte-
gration time of 1 s. The SERS activities increased with laser power and
the best performance was reached at 3 mW. However, the SERS activ-
ities gradually decreased with the further increase of laser power. The
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excess laser power would burn the arrays and reduce the SERS activities.
When the laser power is 1 mW, the line graph of different integration
time versus the peak intensity of crystal violet was presented in Fig. 3(d).
The peak intensity increased with integration time. To achieve fast and
sensitive SERS detection, the laser power and integration time were
selected as 3 mW and 3 s in the following experiments.

3.3. SERS sensitivity of silver nanowires arrays

To further evaluate its SERS sensitivity, the SERS spectra of crystal
violet with different concentrations were measured under the same
condition as depicted in Fig. 4(a). The characteristic peaks at 913, 1176,
1372 and 1620 cm ™! were clearly distinguished. Among them, the peak
at 913 cm ™! could be attributed to ring skeletal vibration. The peak at
1176 cm ™! corresponded to the characteristic of C — H in plane bending
vibrations. The peaks at 1372 and 1620 cm ™' represented N-phenyl
stretching and ring C — C stretching, respectively [30-32]. Fig. 4(b)
visually depicted the relationship between the concentrations of crystal
violet and the SERS intensities at 913 and 1176 cm'. The SERS in-
tensities continuously decreased with the decrease of crystal violet so-
lution concentration. However, the SERS intensities did not change
significantly after the concentration was reduced to 10 mol/L, and two
main characteristic peaks could still be observed. The minimum detec-
tion concentration of crystal violet is 10> mol/L. The results indicated
that the silver nanowires arrays had strong SERS responses. Table 1
listed the detection performance of silver nanowires SERS substrates
prepared by different methods. The arrays prepared by the automatic
writing method showed better sensitivity compared with silver nano-
wires SERS substrates reported in other literatures [19,33-36].

3.4. SERS properties of silver nanowires arrays

The uniformity, reproducibility and stability of silver nanowires ar-
rays were systematically investigated. To study the uniformity of the
arrays, thirty points were randomly selected on the same silver nano-
wires array. The SERS spectra were displayed in Fig. 5(a), and each
spectral line was nearly identical. Furthermore, the peak intensities at
913 cm ™! were plotted as a bar graph in Fig. 5(b). The relative standard
deviation (RSD) value was calculated to be 10.3%. Therefore, the pre-
pared silver nanowires arrays can serve as a relatively reliable SERS
detection platform.

In order to further explore the reproducibility of arrays, 4 x 4 silver
nanowires arrays were prepared on the drawing paper by automatic
writing method. The photograph of silver nanowires arrays was shown
in the inset of Fig. 5(d). The SERS spectra of crystal violet obtained from
the silver nanowires arrays were presented in Fig. 5(c). The sixteen
spectral lines could be well overlapped after being shifted. Fig. 5(d)
displayed a scatter plot of SERS intensity variations corresponding to the
peaks at 913 and 1176 cm L. The corresponding RSD values were 6.83%
and 9.63%, respectively, which indicated that the prepared silver
nanowires arrays had good reproducibility.

Silver is easily oxidized during long-term storage. Therefore, the
stability during storage is critical for the practicality of the SERS arrays.
To study the stability, the SERS spectra of crystal violet were collected
from the same array every week at room temperature, as shown in Fig. 5
(e). The SERS signals can be detected even if the array was preserved for
ten weeks. Each spectral line had good resolution and the peak positions
were almost identical. Fig. 5(f) exhibited the SERS intensities changes at
913 and 1176 cm ™! within ten weeks. The results indicated that the
silver nanowires arrays were relatively stable at ambient temperature.

3.5. Fingerprint detection
Aromatic dyes can be used to enhance the visualization of finger-

prints [36]. Therefore, the detection of crystal violet residues in fin-
gerprints was explored based on the above-mentioned SERS arrays. A
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drop of 102 mol/L crystal violet solution (2.5 pL) was dropped on the
finger and continuously pressed on the arrays for SERS detection. Fig. 6
showed the SERS spectra from the first to ninth pressing. It is evident
that the Raman characteristic peaks of crystal violet were still clearly
visible even after the ninth pressing.

3.6. Quantitative analyses of 2, 2'-bipyridyl

2, 2/-bipyridyl, an aromatic heterocyclic compound containing ni-
trogen, was selected to further detect the SERS performance of the arrays
[37]. The SERS signals could not be detected by directly dropping 2, 2'-
bipyridyl on the silver nanowires arrays. The reason may be that 2, 2'-
bipyridyl molecules can’t attach to silver nanowires. Therefore, it is
necessary to find a substance to help 2, 2’-bipyridyl molecules adsorb on
the surface of arrays. Chlorine ions in hydrochloric acid (HCI) can form
Ag-Cl active sites with silver atoms that are conducive to molecular
chemical adsorption and SERS enhancement, thereby enhancing the
molecules signals [38,39]. Fig. 7(a) displayed the normal Raman spec-
trum of 2, 2'-bipyridyl solid powder and SERS spectrum of 10”° mol/L 2,
2'-bipyridyl after dropping HCl. Compared with the normal Raman
spectrum, the peak positions were slightly shifted. It may be caused by
the interaction between 2, 2'-bipyridyl molecules and the arrays [40]. A
series of 2, 2'-bipyridyl solutions with different concentrations were
dropped on silver nanowires arrays. After they were completely dried, 3
pL of 0.1 mol/L HCl was dropped on the above arrays. The SERS spectra
were then collected before the HCl evaporated, as shown in Fig. 7(b).
The SERS signals decreased with decreasing the concentration of 2, 2'-
bipyridyl. The laser power and the integration time were 5 mW and 10 s,
respectively. Moreover, the detection limit of 2, 2-bipyridyl was as low
as 5 x 10> mol/L. The linear relationship between the SERS intensity at
1488 cm ! and concentration was exhibited in the inset of Fig. 7(b).

4. Conclusion

In this paper, a simple, fast and mass-producible automatic writing
method was adopted to fabricate silver nanowires SERS arrays. The
method has the advantages of easy operation, high efficiency and
automatic preparation. The prepared arrays exhibited strong SERS
response to crystal violet and a low detection concentration of 1071°
mol/L was obtained. In addition, silver nanowires also had good uni-
formity across a single array and high repeatability between different
arrays. More importantly, the Raman scattering signal of crystal violet
could still be observed after ten weeks of storage on the same array.
Finally, the detection of crystal violet residues in fingerprints and the
quantitative analyses of 2, 2’-bipyridyl were successfully achieved based
on the above prepared SERS arrays. The results indicated that the pre-
pared silver nanowires arrays are a relatively sensitive and reliable
detection platform.
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