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A B S T R A C T

A thermal evaporation system was used to deposit Ag thin films on glass substrates. The films were dewetted 
using both a regular laser irradiation approach and a hybrid dewetting process that involved laser irradiation 
followed by Ag thermal deposition. The study would evaluate and compare the optical characteristics and ef
ficiency in melamine detection within these dewetted films. In the traditional dewetting process, as the laser 
power increased from 15 to 25 W, the nanoparticles (NPs) size decreased from 162 to 125 nm. Furthermore, an 
evident optical absorption peak range of 540–600 nm was also observed. Through the hybrid dewetting process, 
a mixture of small NPs (20 nm) and larger NPs (142–167 nm) were formed. It resulted in two distinct Surface 
Plasmon Resonance (SPR) peaks at 460 nm and 660 nm, respectively. Notably, a strong Raman peak at 701 cm− 1 

emerged when a melamine aqueous solution was placed on the hybrid dewetted surface. Comparing the two 
methods, the hybrid dewetted sample exhibited enhanced fingerprint peak intensity and a higher analytical 
enhancement factor (AEF). When operating at laser power of 25 W and a scanning speed of 100 mm/s, the 
maximum AEF value reached 1.9 × 105. The limit of detection for melamine solution in the hybrid dewetted 
sample was established at 10− 7 M. Hence, the hybrid dewetting process is a potential method to produce the 
mixed-sized nanoparticles for diverse applications.

1. Introduction

Melamine is recognized for its high hardness, exceptional heat 
resistance, and effective flame retardancy. This has led to its widespread 
utilization in creating melamine tableware, thermosetting coatings, 
flame-retardant blankets, and other applications. Furthermore, mel
amine is commonly incorporated into food products as a preservative. 
Despite its relatively low toxicity, prolonged consumption of melamine 
can result in various negative health outcomes, including the develop
ment of kidney stones, bladder cancer, and other ailments [1]. As a 
consequence, many studies have witnessed some significant methods to 
determine the melamine concentration within foods and beverages, 
particularly within the realm of food safety and monitoring. Several 
techniques are available for melamine detection, such as high- 
performance liquid chromatography ultraviolet spectrometry (HPLC/ 
UV), liquid chromatography-tandem mass spectrometry (LC-MS/MS), 
and gas chromatography-mass spectrometry (GC/MS) [2]. Among these 
methods, Raman spectrometry could be as a prominently utilized 

technique. This approach captures the vibration spectrum of a distinct 
molecule or lattice. When coupled with the detection of nanoparticles 
(NPs), it gives rise to a methodology referred to as surface-enhanced 
Raman scattering (SERS) [3,4]. Raman spectroscopy offers a rapid and 
efficient means of melamine detection and is characterized by a distinct 
peak at 682 cm− 1 in the Raman spectrum, often referred to as the mel
amine fingerprint peak [5–13].

Nanoparticles (NPs) exhibit a multitude of unique attributes, 
encompassing enhanced surface plasmon resonance (SPR) effects [14]
and remarkable antimicrobial efficacy [15]. The resonant traits of NPs 
exhibit wide variations contingent upon their composition, morphology, 
and dimensions [16]. Nowadays, nanoparticles applications includes 
antibiotics [17,18], biomedicine [19,20], optoelectronics [21], and 
Raman spectroscopic analysis [13,22]. Noble metal nanoparticles like 
gold, silver, and copper have attracted significant interest owing to their 
strong surface plasmon resonance (SPR) effects and noteworthy elec
trical field characteristics [23]. The signal enhancement mechanism of 
SERS is mainly considered to include both electromagnetic 
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enhancement and chemical enhancement [24]. Among them, electro
magnetic enhancement exhibits a greater enhancement amplitude [25]. 
Plasmonic sensors are used to monitor changes in local refractive index 
or spectral fingerprints to detect analytes. The strong EM field in 
metallic nanostructures can enhance the Raman signals of the target 
molecules nearby, making them more easily identifiable, and it has 
lower detection limits compared to other detection techniques [26]. 
These EM fields primarily originate from nanogaps in metallic structures 
or structural hotspots, also known as EM hotspots [27]. Several research 
studies have demonstrated that narrowing the gap in metal nano
structures creates hotspots, resulting in the generation of a strong elec
tromagnetic field [28,29].

Additionally, they amplify the hotspot effect in Surface-Enhanced 
Raman Scattering, thus finding extensive use in medical diagnostics 
[30], and monitoring food safety [31]. Nanoparticles can be generated 
through several methods, including hydrothermal processes [32], 
chemical synthesis [33], methanol catalysis [34], and laser-induced 
dewetting [17,18,35–37]. However, nanoparticles produced through 
chemical processes often demonstrate inadequate adhesion to sub
strates. On the other hand, the resulting nanoparticles frequently exhibit 
incomplete crystal growth [38]. As a result, the utilization of dewetting 
methods to prompt the creation of small particles or nanostructures on 
the substrate surface has gained more attentions [35,39]. Conventional 
physical dewetting approaches tend to be time-consuming and lead to 
uneven distributions of nanoparticle sizes [39]. In contrast, laser- 
induced dewetting due to its localized heating impact, provides a 
straightforward, convenient, and cost-effective avenue for generating 
nanoparticles with customizable attribution [17,18,37].

The literature contains various investigations on the laser-driven 
dewetting strategies, encompassing the dewetting of films on pre- 
patterned substrates [40,41], the dewetting of template-confined films 
[42,43], and the dewetting of thin films by exploiting nanoscale 
Rayleigh-Taylor instabilities [44–46]. Moreover, several studies showed 
the application of laser-induced dewetting in the fabrication of 
biomedical tools [17,18], Raman detection [13], and surface plasmon 
resonance [37]. These studies have demonstrated the potential for the 
expansion of the laser dewetting technique into diverse domains [13]. 
However, based on current knowledge, the utilization of laser-induced 
dewetting to amplify the Surface-Enhanced Raman Scattering intensity 
signal in melamine detection remains largely unexplored.

Accordingly, the present study commences by depositing Ag thin 
films on glass substrates using a thermal evaporation technique. The 
films are dewetted via both a regular laser irradiation and a hybrid 
dewetting process consisting laser irradiation followed by thermal 
deposition. The nanostructures, size distribution, optical attributes, and 
melamine detection capabilities of the dewetted films are investigated 
through the two distinct approaches, thereby facilitating a 

comprehensive comparison.

2. Materials and methods

Glass substrates were initially cleaned by de-ionized water and dried 
with hot air, and then transferred to a thermal evaporator system (SSI- 
T500-1, Taiwan). The chamber’s base pressure was established at 5 ×
10− 6 Torr before the deposition process. In the chamber, silver pellets 
were placed into a tungsten boat, where they were heated to vapor
ization using a resistive heat source. The growth conditions of the 
resulting silver film on the glass substrate were controlled by adjusting 
the current (IAg) and the time of the evaporation process. Specifically, IAg 
was maintained at 40 A, and the deposition rate was roughly 1 Å/sec, 
yielding silver thin films of approximately 10 nm and 2 nm, respectively.

After the deposition process, two distinct dewetting processes were 
employed for the silver films: (1) a traditional dewetting method 
involving laser irradiation, and (2) a hybrid dewetting process involving 
laser irradiation followed by Ag film deposition using the thermal 
evaporator system. In both cases, a continuous wave (CW) laser system 
(R4 HS Series, SPI) emitting at 1070 nm with a spot size of 19 μm was 
used for irradiation process. The laser power settings were adjusted to 
15, 20, and 25 W, while the scanning speed was set at 100, 200, and 300 
mm/s. In the hybrid dewetting process, these specific thermal evapo
ration conditions were established to deposit a 2 nm-thick silver film 
onto the dewetted film. The size and quantity of nanoparticles (NPs) 
formed were determined using ImageJ software (National Institutes of 
Health, USA). The spectrophotometer (Lambda 35, U.S.A) was 
employed to assess the absorbance properties of both the film in its 
original deposition state and the dewetted silver films. The suitability of 
the dewetted silver samples for Raman detection was evaluated using 
aqueous melamine solutions at concentrations ranging from 10− 3 to 
10− 7 M. Furthermore, the Micro Raman system (MRI532S, Taiwan) with 
a wavelength of 532 nm was utilized to capture the Raman spectra of the 
melamine across different dewetted silver films.

The Discrete Dipole Approximation (DDA) involves the combination 
of numerous dipoles to form different waveforms, where the electric 
fields generated by these dipoles are superimposed and the extinction 
spectra of different waveforms are calculated. In DDA, an object is dis
cretized into a set of small cubic units, with each unit being affected by 
incident waves, becoming polarized, and generating an electromagnetic 
field. To compute the electric field at each unit’s position, considering 
the coupling between discretized elements, one must solve a linear 
system in the following form: 

E = Eref +ADαE (1) 

(I − ADα)E = Eref (2) 

Fig. 1. (a) SEM image and (b) absorption spectrum of 10-nm Ag film deposited on glass.
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Here, A is a (3N  × 3N) matrix containing all the Green’s tensors, E and 
Eref are vectors of size 3N, comprising the local field at each discretized 
element’s position and the reference field (i.e., the field in the absence of 
the object), respectively. Dα is a (3N  × 3N) diagonal matrix containing 
the polarizability of each unit, I is the identity matrix.

3. Results and discussions

3.1. Surface morphology and the formation of nanoparticles of laser 
irradiation and hybrid dewetting process

Fig. 1(a) shows the surface morphology of the 10-nm silver film 
deposited by thermal evaporation method. No obvious NPs could be 
observed. Thus, the absorption spectrum of the 10-nm deposited silver 
film shows in Fig. 1(b) reveals that the film has no LSPR effect. The 10- 
nm Ag thin film exhibits an absorption intensity of only 0.6 a.u at the 
incident wavelengths of 600–1000 nm. It means that the formation of 
nanoparticles is required to improve the light absorption performance of 
the film.

Fig. 2(a)–(c) show the surface morphologies and nanoparticle size 
distributions of the films irradiated by laser powers 15, 20 and 25 W, 
respectively. The 15 W-dewetted sample presents a small number of 
isolated island structures compared to the higher laser powers of 20 and 
25 W. These films fully dewetted into high roundness nanoparticles. As 
the laser power increased from 15 to 25 W at scanning speed at 100 mm/ 
s, the NP size decreased from 162 to 125 nm. During the dewetting 
process, the metal film undergoes melting due to the heat supplied by a 
laser, resulting in its disintegration. The metal then rapidly solidifies 
under cooling conditions. To minimize the total energy of the free sur
faces of the film and substrate, as well as their interface, a spontaneous 
self-assembly of nanoparticles occurs. At a laser power of 15 W, the 
dewetted silver film has an island-like structure, indicating insufficient 
energy to fully form nanoparticles. As the laser power increases to 20 
and 25 W, the dewetted silver film transforms into nanoparticle for
mations, with a corresponding decrease in particle size and 

improvement in morphology. This observed variation in particle 
morphology with increasing laser power has also been documented in 
previous studies [13,47].

Fig. 2(d)–(f) show the surface morphologies and nanoparticles size 
distributions of the hybrid dewetted samples. For the sample irradiated 
with a laser power of 15 W, the NP size increases slightly from 162 nm to 
167 nm following the deposition of the additional silver layer with a 
thickness of 2 nm. In contrast to the traditional dewetting process, the 
NP size in the hybrid dewetted sample remains approximately un
changed as the laser power increases. Fig. 3(a) and (b) show the mor
phologies and NP size distributions of a thickness 2-nm silver film 
deposited on a glass slide and the hybrid dewetted sample processed at 
laser irradiated power of 25 W and a scanning speed of 100 mm/s. For 
the 2-nm silver film, the average particle size is around 20 nm. However, 
for the hybrid dewetted sample, the silver film contains a mixture of 
small and large NPs with a size of around 20 nm and 142–167 nm.

3.2. Absorption spectra of dewetted Ag films

Absorption spectra of the dewetted films are presented in Fig. 4(a)– 
(c), depicting various resulting from different scanning speeds (100, 
200, and 300 mm/s) and laser powers (15, 20, and 25 W). All of the 
samples have a strong surface plasmon resonance peak at wavelength of 
540–600 nm. A weak SPR peak is also observed at lower wavelengths of 
350–370 nm. The nanoparticles (NPs) exhibit uniformity within the 
particle’s electromagnetic field, resulting in the emergence of the pri
mary dipole-type oscillation surface plasmon resonance (SPR) peak. 
However, a phase delay stimulates higher-order multipolar resonances, 
giving rise to the appearance of multiple SPR peaks in the spectrum 
[48,49]. It is seen in Fig. 4(a)~(c) that the peak wavelength reduces with 
an increasing power or a decreasing scanning speed, indicating a blue 
shift of the spectrum.

Fig. 4(d)~(f) show that absorption spectra of the hybrid dewetted 
samples with a 2-nm silver layer deposited on the dewetted surface. As 
shown in the three figures, the original silver film deposited directly on a 
glass substrate has a strong absorption peak at around 460 nm. 

Fig. 2. (a)-(c) SEM morphologies and NP size distributions of dewetted films processed with scanning speed of 100 mm/s and laser powers of 15, 20, and 25 W, 
respectively; (d)-(f) hybrid dewetted samples.
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However, the hybrid dewetted samples show an additional SPR peak in 
the range of wavelength 600–660 nm. In other words, the hybrid dew
etted films exhibit two SPR peaks due to the presence of NPs with two 
different sizes in the dewetted morphology, namely 20 nm and 142–167 
nm. Overall, the results show that the hybrid dewetting process leads to 
a broader SPR peak. Furthermore, the larger size of the NPs in the hybrid 
dewetted samples gives rise to a red shift of the spectrum.

3.3. Melamine Raman detection of dewetted Ag films

The Raman spectra of detecting aqueous melamine solution at con
centration of 10− 3 M placed in contact with the dewetted and hybrid 
dewetted films prepared with laser powers of 15, 20 and 25 W and a 
fixed scanning speed of 100 mm/s, respectively. For the dewetted films, 
no obvious peaks are observed for any of the dewetted films (Fig. 5(a)– 
(c)). However, a strong fingerprint peak at 701 cm− 1 is observed for each 
of the hybrid dewetted samples (Fig. 5(d)–(f)). Moreover, it is seen that 

Fig. 3. Morphologies and size distributions of: (a) 2-nm Ag film deposited on glass, and (b) hybrid dewetted sample processed with scanning speed of 100 mm/s and 
laser power of 25 W.
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the hybrid dewetting sample can cause a stronger Raman signal of 
melamine than the traditional dewetting processes for all values of the 
irradiation power due to the mixed-size NP structure of the hybrid 
dewetted films. Although the larger particles exhibit LSPR performance, 
they are ineffective in detecting melamine due to the presence of gaps 
between particles. However, the smaller particles occupy these gaps and 
create additional hotspots that enhance the electromagnetic field, thus 
improving the melamine detection signal. Essentially, the smaller par
ticles in the background provide supplementary hotspots that enhance 

the Raman signal of melamine. In the SERS process, the enhancement 
performance is greatly influenced by the hot spot. The SERS primary 
factors influencing the SERS hotspot are the excitation wavelength and 
the shape and size of the nanoparticles [50,51]. In other words, the size 
distribution of the particles on the substrate for SERS has a significantly 
impact on the intensity of the Raman signal. Hence, in the present study, 
the hybrid dewetted films show a stronger SPR and Raman enhancement 
than the dewetted films. It can be attributed to the amplified electro
magnetic field and resonance quality that produced by the mixed 

Fig. 4. Absorption spectra of: (a-c) dewetted Ag films, and (d)~(f) hybrid dewetted films. (Note that for both series of films, dewetting was performed using scanning 
speeds of 100–300 mm/s and laser powers of 15, 20, and 25 W, respectively. (Note also that the absorption spectrum of a 2-nm Ag film deposited on glass is shown in 
Fig. 4(d)~(f) for reference purposes.)

Fig. 5. Raman spectra for 10− 3 M melamine solutions on: (a)~(c) dewetted Ag films, and (d)~(f) hybrid dewetted films. (Note that for both series of films, dewetting 
was performed using a scanning speed of 100 mm/s and laser powers of 15, 20, and 25 W, respectively.)
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particle size.
Fig. 6 shows the Raman spectra acquired from melamine with 

different concentrations in contact with the hybrid dewetted sample 
irradiated using with a laser power of 25 W and scanning speed of 100 
mm/s. Peaks in the Raman spectra are observed for all of the considered 
melamine concentrations (10− 3 to 10− 7 M). Nevertheless, the finger
print peak intensity at 701 cm− 1 weakens as the concentration of mel
amine reduces, and a weak fingerprint signal still observed when the 
concentration reaches 10− 7 M. In other words, the limit of detection 
(LOD) of the hybrid sample for melamine is 10− 7 M. The LOD at 10− 7 M 

is 0.0126 ppm, which is well below the safety limit of 2.5 ppm estab
lished by the United States and the European Union. Fig. 7 shows the 
variation of the Raman intensity with the melamine concentration for 
the hybrid dewetted sample. It is seen that the intensity decreases with a 
decreasing concentration.

The LOD enhancement of the hybrid dewetted sample compared to 
that of a regular laser irradiation sample can be evaluated via the 
following analytical enhancement factor (AEF): 

AEF = (ISERS/CSERS)/(IRS/CRS) (3) 

where ISERS is the Raman intensity of the SERS enhanced signal, CSERS is 
the melamine concentration associated with ISERS. IRS is the intensity of 
the signal without SERS enhancement, and CRS is the melamine con
centration associated with IRS. The AEF value of the hybrid dewetted 
sample is found to be 1.9 × 105 for dewetting parameters of a laser 
power of 25 W and scanning speed of 100 mm/s.

Fig. 8(a) shows the SERS spectra obtained for a 10− 3 M concentration 
of melamine solution in contact with the hybrid dewetted sample pro
cessed at 25 W and 100 mm/s. It is seen that for 10 randomly chosen 
points on the sample surface, the characteristic peak is located in the 
vicinity of 701 cm− 1. According to the analysis results presented in Fig. 8
(b), the relative standard deviation (RSD) of the 10 peak intensity 
measurements is just 4.37 %. In other words, the hybrid sample provides 
a feasible and stable substrate for melamine detection purposes.

The electric field interactions and electromagnetic field enhance
ments provided by the spacing between prepared nanoparticles are 
simulated by the DDA method. These different particle sizes and spac
ings are formed by varying dewetting parameters. Three structural 
configurations (Laser irradiation, 2 nm silver film deposition, and 
Hybrid dewetting) include a particle size of 134.4 nm with a spacing of 
60 nm, a particle size of 20 nm with a spacing of 2 nm, and a mixed 
particle size of 144 nm and 20 nm with a spacing of 20 nm, respectively. 
Fig. 9(a)–(c) show the simulation results calculated using incident light 
wavelength at 532 nm. It’s evident that the electronic field intensity is 
highly dependent on the gap distance. The simulation results clarify that 
in the case of laser dewetting alone, where the distance between parti
cles is relatively large, the value of |E|2 is smaller, leading to a less 
significant enhancement in SERS. However, when incorporating 2 nm 
silver film deposition with larger particles, the extremely close spacing 
between the small particles generates the strong hotspot enhancement. 
The presence of these small particles also compensates for the insuffi
cient spacing between large particles to form hotspots, thereby creating 
EM hotspots and further enhancing the Raman signal of melamine when 
analyzing the hybrid dewetting sample as SERS substrate.

Fig. 10 presents a schematic diagram of the conventional dewetting 
process (I) and hybrid dewetted process (II). For illustration purposes, 
the dewetting process is assumed to be conducted using a laser power of 

Fig. 6. LOD values for different melamine concentrations using hybrid dew
etted sample processed with a scanning speed of 100 mm/s and laser power of 
25 W.

Fig. 7. Variation of Raman intensity with melamine concentration for hybrid 
dewetted sample processed with a scanning speed of 100 mm/s and laser power 
of 25 W.

Fig. 8. (a) Melamine SERS spectra collected from 10 random points, and (b) relative standard error of Raman intensity at 701 cm− 1 peak for hybrid dewetted sample 
processed at 25 W and 100 mm/s.
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25 W. In the SEM images, the formed NPs in both cases have a larger and 
more uniform size. Moreover, the hybrid dewetted sample contains both 
large and small nanoparticles densely distributed on the surface. The 
SPR peak for the hybrid dewetted sample has a broader range (460–660 
nm) than the traditional dewetted sample (540–600 nm). Finally, 
compared to the traditional dewetted sample, the hybrid sample exhibits 
a single obvious peak in the Raman intensity spectra. Thus, the hybrid 
dewetting process effectively enhances the LOD performance of the 
sample for melamine.

4. Conclusions

This study revealed the effects of two dewetting procedures (i.e., 
traditional laser irradiation and laser irradiation followed by thermal 
deposition) on the formation of NPs in thin Ag films deposited on glass 
substrates. In the traditional laser irradiation dewetting process, nano
particles with a size of 162 and 125 nm were performed at laser powers 
of 15 and 25 W, respectively. Although the larger particles exhibit LSPR 
performance, they are ineffective in detecting melamine due to the 

Fig. 9. SEM image and the simulated electromagnetic field intensity |E|2 at (a) laser irradiation process, (b) 2 nm silver film deposition, and (c) Hybrid dewet
ting process.

Fig. 10. Schematic diagrams of (I) laser irradiation process and (II) hybrid dewetted process, together with corresponding SEM morphologies, absorption spectra, 
and Raman spectra.

H.K. Lin et al.                                                                                                                                                                                                                                   Optics and Laser Technology 181 (2025) 111673 

7 



presence of gaps between particles. For the hybrid dewetted films, a 
mixture of small-sized (~20 nm) and large-sized nanoparticles with a 
size of 142–167 nm was formed at 25 W. The mixed-sized nanoparticles 
in the hybrid dewetted films led to an increase in the intensity of the SPR 
peak signal and a wider absorbance spectrum. The absorbance wave
length of the LSPR in the hybrid dewetted sample was from 460 to 660 
nm, and it exhibited a red shift with a decreasing power. The smaller 
particles occupy these gaps and create additional hotspots that enhance 
the electromagnetic field, thus improving the melamine detection 
signal. Essentially, the smaller particles in the background provide 
supplementary hotspots that enhance the Raman signal of melamine. 
Based on these simulation results, when incorporating 2 nm silver film 
deposition with larger particles, the extremely close spacing between the 
small particles generates strong hotspot enhancement. The presence of 
these small particles also compensates for the insufficient spacing be
tween large particles to form hotspots, thereby creating EM hotspots and 
further enhancing the Raman signal. When utilized for melamine 
detection, the hybrid dewetted sample displayed a more consistent 
fingerprint peak, a lower detection limit of 10− 7 M, and a higher AEF of 
1.9 × 105. Therefore, the hybrid dewetting process is a promising 
method for creating uniform mixed-sized nanoparticles for diverse 
applications.
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